Statistics on wreath products, perfect matchings, and signed words
نویسندگان
چکیده
We introduce a natural extension of Adin, Brenti, and Roichman’s major-index statistic nmaj on signed permutations (Adv. Appl. Math. 27, (2001), 210−244) to wreath products of a cyclic group with the symmetric group. We derive “insertion lemmas” which allow us to give simple bijective proofs that our extension has the same distribution as another statistic on wreath products introduced by Adin and Roichman (Europ. J. Combin. 22, (2001), 431− 446) called the flag major index. We also use our insertion lemmas to show that nmaj, the flag major index, and an inversion statistic have the same distribution on a subset of signed permutations in bijection with perfect matchings. We show that this inversion statistic has an interpretation in terms of q-counting rook placements on a shifted Ferrers board. Many results on permutation statistics extend to results on multiset permutations (words). We derive a number of analogous results for signed words, and also words with higher order roots of unity attached to them.
منابع مشابه
Restricted cascade and wreath products of fuzzy finite switchboard state machines
A finite switchboard state machine is a specialized finite state machine. It is built by binding the concepts of switching state machines and commutative state machines. The main purpose of this paper is to give a specific algorithm for fuzzy finite switchboard state machine and also, investigates the concepts of switching relation, covering, restricted cascade products and wreath products of f...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملSigned Lozenge Tilings
It is well-known that plane partitions, lozenge tilings of a hexagon, perfect matchings on a honeycomb graph, and families of non-intersecting lattice paths in a hexagon are all in bijection. In this work we consider regions that are more general than hexagons. They are obtained by further removing upward-pointing triangles. We call the resulting shapes triangular regions. We establish signed v...
متن کاملComplete forcing numbers of polyphenyl systems
The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...
متن کاملMatchings in Graphs on Non-orientable Surfaces
P.W. Kasteleyn stated that the number of perfect matchings in a graph embedding on a surface of genus g is given by a linear combination of 4 Pfafans of modi ed adjacencymatrices of the graph, but didn't actually give the matrices or the linear combination. We generalize this to enumerating the perfect matchings of a graph embedding on an arbitrary compact boundaryless 2-manifold S with a linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 26 شماره
صفحات -
تاریخ انتشار 2005